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Abstract

Largely due to the proliferation of the World Wide
Web, and interfaces such as Netscape, users expect
to have many different types of information immedi-
ately available. When they encounter a lengthy delay
caused by heavy loads on shared resources, such as
networks or servers, users often (manually) adapt
by requesting different forms of the same informa-
tion. As both mobile and agent computing becomes
more popular, users will expect their applications to
automatically adapt to heavy resource loads by fetch-
ing the information in a different form, e.q., text in-
stead of graphics. This paper studies the accuracy
with which resource loading information, particularly
network loading information, must be known in or-
der for applications to successfully, and with agility,
adapt. We determine that under many normal con-
ditions, fairly inaccurate estimates of currently avail-
able bandwidth suffice. However, when the system is
heavily loaded, some strategies can perform much bet-
ter with very accurate load estimates. That is, assum-

*This research was supported by DARPA under con-
tract number E583. Additional support was provided by the
Naval Postgraduate School and the Institute for Joint Warfare
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ing that the adaptive applications have hard deadlines
for obtaining the data they request, up to 20% more
of them will receive some form of that data on time, if
the adaptation strategy has a good estimate of avail-
able bandwidth. Additionally, in these situations, ap-
plications that have a better estimate of bandwidth
can deliver, on average, larger sized messages corres-
ponding to, in many cases, higher quality data. Fi-
nally, the accuracy with which the bandwidth must be
known varies not only with inter-arrival rate, but also
with the adaptation strategy used and the percentage
of adaptive applications in the system.

1 Introduction

Most of today’s applications do not automatically ad-
apt their resource needs to changing computational
environments. For example, an Internet browsing ap-
plication may attempt to load a 5 MByte web page
whether the expected time to obtain that web page is
10 minutes (lightly loaded network) or 1 hour (heavily
loaded network). In such an application, the burden
is placed on the user to manually stop the loading of
the current web page and request, for example, sim-
ilar information in a different format, perhaps without
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graphics, in order to obtain the desired information
in a reasonable amount of time. In this paper, we in-
vestigate support for applications that automatically
adapt to resource availability by reacting to estimates
of loads on those resources. In particular, we investig-
ate, through simulation, how accurate the predictions
of resource loads, specifically loads on the network,
must be in order for adaptive clients to obtain good
performance.

Using simulation, we examine the performance of
three different client adaptation strategies. One is a
control strategy wherein the client does not adapt,
and the other two adapt by making use of resource
loading information of varying quality. Our clients
set deadlines, after which the requested information
is not needed. We use a mix of adaptive and non-
adaptive clients and vary the load they place on the
network. In one of our adaptive strategies, all clients,
not just the adaptive clients, stop sending information
if the information does not arrive before its deadline.

In the body of this paper, we first describe the gen-
eral problem on which we are working, then identify
the specific part of this problem that we concentrate
on in this paper. In our related work section, we com-
pare this work to other ongoing work in the field of
support for adaptive applications and we describe a
particular existing service implementation, known as
a Communications Server, that supports adaptation
by estimating the current network load. We describe
in that section how far the Communications Server’s
estimates were from the actual network load in our
experiments. We use the results from these experi-
ments as input for some of our simulations. We then
describe our simulation model. Our model includes
our adaptation strategies, our simulation parameters,
and our methodology. We then present our results.
Finally, after briefly describing our current work on
an architecture to support adaptive applications, we
summarize our conclusions.

2 The Problem

This paper is the first in a series of papers about
the software architecture for our Management System
for Heterogeneous Networks(MSHN). MSHN lever-
ages our experience in designing, building, and ex-
perimenting with SmartNet, which is a scheduling
framework for heterogeneous computing [7]. MSHN
is an extensible software architecture that is layered
on top of native operating systems and network pro-

tocols. MSHN is responsible for determining which
large scale resources, such as compute servers and file
servers, should be used to execute particular requests,
and shepherding the solutions to those requests. It is
also responsible for determining which version of an
adaptable application should be used to respond to a
request.

MSHN uses a model of the underlying resources,
and the systems that manage those resources, to de-
termine both which resources should be used and
which version of an application to execute. It uses es-
timates of resource requirements, which it also main-
tains, as well as estimates of resource availability to
make its determinations. Unlike SmartNet, it does
not assume that it has control over all applications
using the resources.

One example of an adaptive application is one that
is capable of receiving and displaying data in many
different formats. Another example is an application
that has many different synchronization formats, dif-
ferent ones of which would be more appropriate un-
der various resource and loading environments. Still
another example is an application used by someone
who would prefer today’s weather forecast, but who
would accept yesterday’s. We expect adaptive cli-
ent applications, usually using MSHN’s libraries, to
query MSHN servers to determine the current status
of resources. Adaptive applications would then be-
gin to use an application format that was well-suited
to the available resources, but might need to adjust
their decision if higher priority applications need the
resources.

This paper documents our investigation into one
aspect of MSHN. The particular problem that this
paper deals with is determining how accurate an es-
timate of resource availability is necessary in order to
implement a successful strategy for adapting. Know-
ing how accurate an estimate is needed will help us
when we refine MSHN’s architecture, because it will
help us trade off the amount of time required to get
better estimates against the performance benefits that
applications will receive from such estimates.

3 Relationship to Other Work on
Adaptive Systems

There are many systems that are currently exploring
adaptivity as a response to resource load changes in
the areas of high performance computing, real-time



network protocols, and in systems that support mo-
bile computing.

Siegel [1] investigates adaptation by reconfiguring
a SPMD application into a SIMD application. Re-
searchers at UCSD are examining general approaches
to reconfiguring applications based upon the types
and numbers of processors available [2].

Xie [9] has developed a new network architecture,
called Burst Scheduling, to guarantee the real-time
quality of service needs for multimedia applications
when the loads on the networks are continually chan-
ging. RLM [11] examines receiver initiated adapta-
tion for network applications that execute in a het-
erogeneous multicast environment.

Several researchers are investigating support for
mobile applications [12], [6], [3]. In fact, the term
“agility,” used in the title of this paper, is defined
by Satyanarayanan when describing the Odyssey sys-
tem, as the speed and accuracy with which an ad-
aptive system detects and responds to changes in re-
source availability. There are two major differences
between Odyssey and MSHN: (i) Odyssey is aimed
at mobile applications whereas MSHN is not; and
(i) Odyssey does not consider supporting applica-
tions with hard deadlines, whereas many of MSHN’s
applications, if not completed by their deadlines, are
useless. Additionally, most of these systems, have, as
a key component some mechanisms for encapsulating
data typing information. Finally, QuO [18] tackles
the software engineering problem of building applic-
ations that are capable of adapting.

The previous work most closely related to this pa-
per is design work on the JTF-ATD Communications
Server. The Communications Server is one of the
servers provided by the the Defense Advanced Re-
search Projects Agency’s (DARPA) Joint Task Force
Advanced Technology Architecture [4, 5]. It is the job
of the Communications Server to predict the current
network loads. The Communications Server obtains
its estimates by actively sending different sized pack-
ets over the network and recording the amount of time
required for a round trip. Using this timing informa-
tion, it estimates the average bandwidth that is avail-
able, along with the latency for packets sent along the
network. When queried, the Communications Server
reports the instantaneous reading, without anchor-
ing it through the use of historical data. In addition
to placing an additional load on a possibly heavily
loaded resource, the Communications Server, then,
is also subject to inaccuracies caused by the bursty

nature of network traffic. Along this same line, Wol-
ski’s Network Weather Service [17, 16] implements
a method for monitoring current network use and
CPU load, using historical information to predict fu-
ture use and load. Like the Communications Server,
whose accuracy we report on in this paper, also estim-
ate bandwidth availability by sending different sized
data sets over the network and recording the time re-
quired for the transfer.

Since this paper examines the performance of ad-
aptation policies, as a function of the accuracy of
bandwidth predictions, we include the expected ac-
curacy of the Communications Server as one data
point in our simulations.
Communications Server accuracy in these simula-
tions, we ran several file transfer experiments. While
the Communications Server monitored the bandwidth
between two computers, we transferred files and re-
trieved readings of the Communications Server’s pre-
dictions. We plotted the difference between the actual
average bandwidth and the Communications Server’s
predicted bandwidth and found it to be very close
to an exponential distribution with a mean of 1Mbit,
offset by 340Kbits.

In order to mimic the

4 Our Simulation Model

We  built  discrete  event  simulations  of
communication-intensive applications that exchange
information with one another over a fully-connected
network. In this section, we enumerate the values
that are fixed in our simulations and describe the
parameters that we varied. Before enumerating these

values and parameters, we define several terms:

Node. A location that contains many computers
that generate network traffic, such as a business

office.

Client. An application that generates its own mes-
sages. There are typically many clients at a
single node.

Best Case Latency. The amount of time it would
take for a message to arrive if it could use all of
the bandwidth on a channel. We will denote the
best case latency as Ly.

The assumptions we use below are similar to those
used in simulations of an initial Communications
Server design performed by Teknowledge Federal
Systems [15]. The characteristics of the simulation



experiments that we will describe reflect the follow-
ing scenario. Two sites were used, one afloat and
the other ashore. Three classes of slightly modified
application clients were considered: a time-critical
electronic mail system, a time-critical database cli-
ent, and a time-critical web client. In each case, if
data is not received on time, lives may be at stake.
Similarly, two of the situations used, when we gen-
erate messages on average every two and every three
Such
a crisis situation might exist if there is a weather
emergency (e.g., a tsunami) in the Pacific and de-
cisions to evacuate civilians must be made correctly
and quickly. We are all familiar with the fact that
in such emergencies phone lines become inaccessible
due to overuse, if not due to weather conditions. The
same will soon be true for network resources. It is
exactly in these emergencies that we wish to ensure
that

seconds, we consider to be crisis situations.

o the highest priority information is delivered on
time, and that

e the users of the applications receive sufficient in-
formation to make wise decisions.

Characteristics Common to all of our
Simulation Experiments

4.1

Given the definitions above, our simulation models a
network with the following properties.

e Qur simple network has two nodes. No routing
is therefore needed; all messages are sent over
direct connections.

e The connection between the two nodes is full du-
plex with a throughput of 10 Mbits/second. Half
of the network’s bandwidth, 5 Mbits/second, is
available for each direction.

e Each client using the network receives an equal
share of the bandwidth.

During the simulation, non-adaptive clients gen-
erate ordinary messages according to the inter-
arrival distribution associated with that particular
simulation. Ordinary messages differ from adapt-
able messages in that ordinary messages are avail-
able in only a single format. The adaptable messages
are generated using the same inter-arrival distribu-
tion. All messages have the following attributes.

e A priority, P, that ranges between 0 (high pri-
ority) and 9 (low priority). We generate the pri-
ority using a uniform distribution.

e The tolerated latency is the amount of time
that the application is willing to wait for the data
to arrive, before it considers it to be late. The
deadline is derived by adding the current time
to the tolerated latency. As might be expected,
we set up the experiment such that the higher
priority messages have smaller tolerated laten-
cies; that is, the higher priority messages needed
to arrive at their destination sooner.

For (ordinary) messages from non-adaptive ap-
plications, we set the tolerated latency to:

16 x Ly if P € {8,9}
12x Ly if Pe {567}
10 x Ly if Pe{2,3,4}
7x L, if P€{0,1}

The tolerated latencies for adaptive messages are
chosen from a uniform discrete distribution of
{Ly 4+ 30 minutes, Ly + 60 minutes, L, + 90
minutes}. As these tolerated latencies ultimately
represent the maximum amount of time avail-
able to get some required information to a hu-
man decision maker, say some commander in the
field, they are highly arbitrary. Depending upon
the decision being made, the tolerated latency
can range anywhere from seconds to days. The
distribution used above was selected as “reason-
able” given a tactical planning scenario.

e Non-adaptive clients send ordinary messages
that have different lengths depending upon their
class.

— Class A messages are exponentially distrib-
uted around 1 MByte and are generated
60% of the time;

— Class B messages are exponentially distrib-
uted around 1.4 MBytes and are generated
25% of the time; and

— Class C messages are exponentially distrib-
uted around 50 MBytes and are generated
15% of the time.

Finally, we ran each experiment using 10 different
sets of random seeds. In each set, a different seed
was used for each of the following distributions:



e the inter-arrival rate,
o the message class type generation,

e the distribution that determined whether a client
was adaptive or non-adaptive,

e each different message size distribution, and

the priority.

Also, we verified that, in every case, we ran our
simulation long enough to reach a stable state. This
is especially important because in some of our exper-
iments, the network was very heavily loaded due to a
small average inter-arrival time.

4.2 Adaptation Strategies

In different simulations, we varied the percentage of
adaptive clients between 1.25% and 100% of all cli-
ents. Non-adaptive clients exchange data that is avail-
able only in a single format. On the other hand, all
data that an adaptive client needs to send is avail-
able in any of five formats. The actual sizes for each
of the five data formats are chosen from exponen-
tial distributions with means 3000 MBytes (8 minutes
of color video), 300 MBytes, 30 MBytes, 3 MBytes,
and .3 MBytes (simple text description). We assume
that our adaptive clients’ preference for the various
formats decreases with size. That is, the most im-
portant format for each client to exchange is the
largest one and the smallest format is of least im-
portance.

We ran our simulations using three different client
adaptation strategies. In the first strategy, Strategy
1, the client first requests a performance prediction
from the server; that is, it requests that the server
respond with its current estimate of the available
bandwidth of the network. The client! then calcu-
lates whether, based on this predicted bandwidth, it
should be able to transmit the largest size format of
the required data. If the calculation indicates that
this format can be transmitted in its entirety before
its deadline, the client begins to send the data. If

!In this paper, we attribute much of the work of adapting to
the client application. However, in the architecture that we are
currently building most of the adaptation work is to be done
via common libraries that are linked with the client. In our
architecture, the client simply supplies the list of acceptable
formats along with a ranking indicating its preference for each

format.

the client’s calculation indicates that this transmis-
sion cannot be completed before the deadline, the
client iterates through the various size formats from
larger to smaller, until it determines the largest one
that the client can expect to send in its entirety prior
to that deadline, and begins to send it. Periodically
the server updates the client with new estimates of
available bandwidth. If, based upon a new estimate,
the client calculates that it cannot complete sending
the format that it is currently transmitting prior to
its deadline, it stops transmitting that format and
searches for a smaller format that it can expect to
complete prior to the deadline and begins transmit-
ting that format. 2

Strategy 2 is very similar to Strategy 1. The
only difference is that in Strategy 2, both adaptive
and non-adaptive clients take action if their dead-
line arrives and they have not completed transmitting
their current format; they stop transmitting when the
deadline arrives. In Strategy 1, such “late” formats
were sent to completion, despite the deadline having
passed. Strategy 1 seems to be a very inconsiderate
strategy. However, similar strategies, known as “ap-
plication centric” strategies, are used in many high
performance applications [2].

Strategy 3 acts as a control. In this strategy,
the client does not really adapt. It always attempts
to send the largest format and continues sending it
until that format has been transmitted in its entirety.
We note that this strategy, though seemingly more
wasteful even than Strategy 1, is the default strategy
in most Internet web servers.

4.3 Simulation Parameters

In this section we identify our simulation paramet-
ers and how we varied them for different simulations.
The majority of our experimental space (Figure 1) is
focused on the three parameters that we discuss first.

We ran different simulation experiments for differ-
ent average inter-arrival rates. In each simulation,
the amount of time between client message genera-
tion is exponentially distributed around the mean.
The means for the different experiments are set at
2 seconds, 3 seconds, 15 seconds, and 60 seconds.
Given the amount of data being sent in our experi-
ments, the 2- and 3-second average inter-arrival times

2The adaptive clients in our current simulation do not ever
start sending a larger format.
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Figure 1: Experimental space using the parameters
of inter-arrival times, percentage of adaptive clients,
and accuracy of bandwidth estimates.

simulate a critical or busy mode while the 15- and
60-second mean inter-arrival times simulate a lightly
loaded mode.

In each experiment, some of our client applic-
ations are adaptive, while the remainder are non-
adaptive. We ran some experiments where all of the
clients (100%) are adaptive and others where very few
(1.25%) are adaptive. We also examined some ratios
in between these extreems: 20%, 10%, 5%, and 2.5%.

We ran different experiments varying the accur-
acy with which our server could predict the instant-
aneously available bandwidth. Since we are run-
ning a simulation, instantaneous and exact values
of the bandwidth are available. To simulate real-
ity, we added “noise.” This noise was sampled
from exponential distributions with various different
means. Since an exponential distribution produces
only positive numbers, we changed the sign of the
noise by multiplying it by a sample taken from the
discrete uniform distribution {-1,1}, i.e., we flipped
a coin. We call this skewed bandwidth estimate the
Instantaneous prediction. We ran experiments us-
ing means, measured in Kbits/second, of 0, 2.5, 5,
7.5, 10, 20, and 50 with the (.85,.15) and (.15,.85)
weights described below.

Also, because network traffic is bursty, and be-
cause, like all good control systems, we wanted
to avoid unstable situations, we had our simu-
lated server use two different sets of weights when

producing its bandwidth estimation. In the first
case it used Prediction; = 0.15 x Instantaneous
prediction+0.85 X Prediction;_q, where Prediction;
was the estimate used to determine whether the
current format could be completed. We also per-
formed experiments using Prediction; = 0.85 X
Instantaneous prediction + 0.15 x Prediction;_y.
When we discuss results pertaining to using these dif-
ferent weights in Section 5.2, we will denote them as
the weights (z,y), where z refers to the weighing of
the Instantaneousprediction and y, to the weight-
ing of the estimate Prediction;_;. We note that the
Communications Server uses a weighting pair of (1.0,
0.0), which we use for generating data values that
correspond to the performance of a server such as the
Communications Server.

5 Results

In this section we present results from our simulations
and summarize our conclusions from these results.
For each experiment, we measured both the average
size of the adaptive messages that arrived before their
deadline and the percentage of adaptive messages for
which no format arrived on time.

5.1 The Need for Adaptation

We first present results that demonstrate the need for
adaptation. After these results and our conclusions
from them, we restrict our attention to only Strategies
1 and 2 (Section 4.2). As mentioned above, Strategy
3 was our control case wherein adaptive applications
simply tried to send the largest format of each data
item.

In these experiments, 5% of the processes were ad-
aptive; that is, they attempted to deliver a message
of a size drawn from an exponential distribution with
mean 3000 MBytes. For all inter-arrival times (means
of 2 seconds, 3 seconds, 15 seconds, and 60 seconds),
98% of these large messages did not arrive before
their deadline, even when we removed messages im-
mediately if they exceeded their deadlines. In order
for these applications to meet critical deadlines, it is
apparent that both a method of estimating the net-
work resource load and a strategy for adapting to
bandwidth availability is needed.



5.2 The Effect of Varying Weights

In this section, we show that using the weight pair
(.15, .85) is substantially better than the pair (.85,
.15). In later sections we restrict our discussion to
experiments involving only the weight pair (.15, .85).

Using Strategy 1, we again ran simulations where
5% of the messages were adaptive. Table 1 shows res-
ults from these simulations. The weighting scheme

INTER SIZE FOR SIZE FOR
ARRIVAL | (.85, .15) (.15, .85)
TIME WEIGHTING | WEIGHTING
(SECS) (KByTEs) | (KBYTEs)
2 761 1271
3 1833 2546
15 45793 45929
60 297269 299379

Table 1: Average size of messages received using dif-
ferent weighting schemes under Strategy 1 (5% ap-
plications adaptive).

(.15,.85) is much better when the messages have
an inter-arrival mean time of 2 and 3 seconds, and
slightly better than (.85, .15) for the 15- and 60-
second mean inter-arrival times. The difference
between the weighting schemes is a matter of reac-
tion time. Using (.85, .15), adaptive applications will
tend to react more quickly to an instantaneous read-
ing which can cause resource thrashing, especially in
a heavily loaded environment. On the other hand,
the (.15, .85) scheme allows adaptive applications to
make better informed decisions based on statistics
gathered over a period of time. Ideally, one would
want to dynamically adjust these weights depend-
ing upon the observed behavior of the data being
sampled. That is, the weights would dynamically
change based upon detection that the underlying stat-
istics of the sample data is changing. Techniques
used to build filters that accomplish this dynamic
weighting can be found in Singer [13], LeMay and
Brogan [10], and Sworder [14]. While a real system
would likely use such filters, we chose to keep our
simulation simple and therefore we ran the rest of
our simulations, excluding those that mimicked the
Communications Server, using the (.15,.85) weight-
ing scheme. As mentioned earlier our simulations that
mimicked the Communications Server were executed
using the (1.0, 0) weighting because that server does
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Figure 2: Average size of adaptive messages received
for an inter-arrival time of 2 seconds.

not anchor its predictions with historic information.

5.3 Strategy 1 vs. Strategy 2

In this section, we see that there is some benefit to
be gained from dropping messages that exceed their
deadline. In comparing these two strategies, we use
an Instantaneous prediction with a mean error rate
of 5.0 Kbits.

Figure 2 shows that when the network resource is
very busy (mean inter-arrival time of 2 seconds), the
benefit of dropping messages that exceed their dead-
line is substantial.> The results for a 3 second inter-
arrival time are very similar.

When the network resource becomes less loaded,
there is less benefit from dropping late messages.
This is due to the fact that there are fewer messages
that are late, and hence eligible to be dropped, be-
cause the network resource is not in high demand.
Figure 3 shows the results for mean inter-arrival time
of 15 seconds. When the mean inter-arrival time is 60
seconds, applications receive sufficient bandwidth the

FAt this point we note that in Figure 2 which we have
already discussed, as well as in both Figure 3 and Figure 4
which we will soon discuss, it may at first appear that per-
formance is decreasing as the fraction of adaptive applications
increases. Actually, these graphs must be carefully considered.
As the fraction of adaptive applications increases, so does the
amount of traffic that the applications collectively attempt to
place on the network, since the average size of a message from
an adaptive application is larger than the average size of a
message from a non-adaptive application.
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Figure 3: Average size of adaptive messages received
for a mean inter-arrival time of 15 seconds.

majority of the time. Figure 4 demonstrates that in
this case there is no benefit derived from, nor penalty
paid for, dropping late messages.

5.4 Determining How Accurate Server
Estimates Should Be

In this section we examine a multitude of operating
points to determine under what conditions:

1. A simple server, such as the JTF-ATD Commu-
nications Server, will suffice, and

2. When a more accurate assessment of resource
load is needed.

As we stated in the previous section, we per-
formed experiments with the JTF-ATD Communic-
ations Server, wherein we recorded the Communica-
tions Server’s estimate of latency based upon its in-
trusive occasional messages. At the same time as the
Communications Server was “snooping” on the net-
work, we ran applications that sent round-trip mes-
sages and as accurately as possible measured the ac-
tual latency and bandwidth. We found that the differ-
ence between the estimated and the actual bandwidth,
that is, the error in the estimate, very closely approx-
imated an exponential distribution with mean of 1
Mbit, offset 340 Kbits in the negative direction [8].
We therefore used this distribution to predict adapt-
ive performance based upon advice from this intrus-
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Figure 4: Average size of adaptive messages received
for an inter-arrival time of 60 seconds.

ive server. The data points in the graph labeled Com-
munications Server correspond to this performance.

Before discussing actual results for different ac-
curacies of server estimates, we note that simulations
that use 2 and 3 seconds as their mean message inter-
arrival time model a crisis situation. In a military en-
vironment, such inter-arrival rates occur in an emer-
gency, such as during a sudden biological attack. In
this case, the network resource will be in high de-
mand, but the priority messages must make it to their
destinations before their deadlines. However, when
the mean inter-arrival times are 15 and 60 seconds,
the network resource is under normal use, and not
many applications are competing for the same net-
work resource.

In order to determine how accurate a server must
be when estimating a resource’s load, we collected
data for each of the Instantaneous prediction er-
ror means enumerated above. The first criteria ana-
lyzed was the number of messages that did not make
their deadlines under Strategies 1 and 2. Figures 5
and 6 display the results of Strategy 2 when there
are 100% and 1.25% adaptive messages, respectively.
The results showing the number of late messages for
Strategy 2 show a trend similar to that of Strategy
1. We note that the points labeled “Communications
Server” model the accuracy of the JTF ATD Com-
munications Server as discussed above.

For each of the Instantaneous prediction means,
including the Communications Server, there were no
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Figure 7: Percentage of messages not received by
deadline using Strategy 2 and 100% of messages are
adaptive.

late messages for mean inter-arrival times of 15 and
60 seconds. Therefore, we now focus on the crisis
situations (2 and 3 second mean inter-arrival times)
and determine how accurate a server’s prediction
must be. Figure 7 and Figure 8 eliminate the Com-
munications Server data and focus on more accurate
assessments. Again, the results for Strategy 1 show
similar trends. Before continuing further, we wish to
point out an interesting phenomena that is seen on
close examination of these figures: the small spike
at 2.5 KB/sec error in Figure 7 and the downward
slope prior to 2.5 KB/sec error in Figure 8. These
phenomena result from our applications being too op-
timistic initially. When many adaptive applications
decide almost simultaneously, to send a message, and
they have an accurate assessment of the available
bandwidth they may all attempt to send very large
formats. When they notice that the other applications
are also sending large formats, they throttle back, but
sometimes it is too late, because they have already
put so much data on the network that they prevent
one another from completely transmitting any size of
message.

After examining these results closely, we determ-
ined that, in a crisis situation, being within 20
Kbits/second of the actual network throughput al-
lows most messages to meet their deadlines. Using
a less accurate server may result in an unacceptable
loss of data, possibly meaning loss of life in some ap-
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Figure 8: Percentage of messages not received by
deadline using Strategy 2 and 1.25% of messages are
adaptive.

plications.

The second criteria we examine is the average size
of the message that does arrive on time. Figure 9
shows the results for Strategy 2 when 100% of the ap-
plications are adaptive. We note that when the server
estimates are less accurate, only smaller messages are
successfully received. We observed this trend for all
inter-arrival times for these simulations.

In order to better understand the circumstances un-
der which the average size received is maximized, we
refer to Figure 10. The figure indicates that being
within 5 Kbits/second will get the best results in a
crisis situation under most loads and being within
10 Kbits/second may suffice in many circumstances.
The only exception to this rule is seen when only
1.25% of the applications are adaptive, and the mean
inter-arrival rate is 60 seconds. Figure 11 shows that,
in this case, a server such as the Communications
Server will allow for larger adaptive messages to ar-
rive on time. Since there is little competition for the
network resource, a less accurate picture of the load
is acceptable. Overall though, as Figure 12 shows,
when a crisis situation occurs, it is better to have
an accurate server, one that can predict the network
bandwidth within 10 Kbits/second. The results for
Strategy 1 again are similar to the results presented
here.

As can be seen from the results, most cases re-
quire an accurate estimate of the network resource
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Figure 9: Average size of successful adaptive mes-
sages using Strategy 2 when 100% of the messages
are adaptive and the mean inter-arrival time is 15
seconds.
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Figure 10: Average size of successful adaptive mes-
sages using Strategy 2 when 100% of the messages
are adaptive and the mean inter-arrival times are 2
and 3 seconds.
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Figure 11: Average size of successful adaptive mes-
sages using Strategy 2 when 1.25% of the messages
are adaptive and the mean inter-arrival time is 60
seconds.
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Figure 12: Average size of successful adaptive mes-
sages using Strategy 2 when 1.25% of the messages
are adaptive and the mean inter-arrival times are 2
and 3 seconds.
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(within 10 Kbits/second), especially in a crisis mode.
However, when there is little competition for the re-
source and the percentage of adaptive applications
was small, a less accurate estimate may be useful.

6 Current Work

In addition to expanding the portion of the parameter
space covered by our simulations for the problem de-
scribed in this paper, we are currently in the process
of refining both the generalized scheduling problem
that MSHN addresses as well as our software archi-
tecture. The scheduling problem, for which MSHN
provides support, is a stochastic pseudo-Boolean pro-
gramming problem. MSHN’s initial architecture is
made up of wrappers for system calls; an adaptation
client library; two database supporting servers, one
maintaining a quickly changing database and another
maintaining a fairly rapidly changing database; and
a SmartNet-like scheduling advisor. Further descrip-
tion of the MSHN architecture is beyond the scope of
this paper and will be documented elsewhere.

7 Conclusions

In this paper we saw that, for situations similar to
those examined by Teknowledge, an adaptive client
requires a better network resource load assessment
than can be furnished by an intrusive server that oc-
casionally examines the state of the network. Spe-
cifically, estimating the network resource within 10
Kbits/second allows applications to adapt very well
in most cases and in some cases an estimate within
20 Kbits/second suffices. While we make no claim
that these results apply for situations with very dif-
ferent parameters than we examined in this paper,
we chose these parameters both because they repres-
ented realistic scenarios and because they allowed us
to compare various adaptation strategies under con-
ditions which had already been examined by others
against those same strategies when more information
is available.

Finally, this paper only focuses on estimating the
network resource load, but other resources, such as
CPU and hard drive use, must also be monitored.
In order to allow easy development of adaptive ap-
plications, an architecture that provides these applic-
ations an interface to accurate information, such as
that presented in this paper, is essential.
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